Throughout these templates, let $\sum_{n=1}^{\infty} a_{n}$ be a series. We hope to determine the convergence of this series.
Divergence Test: If $\lim _{n \rightarrow \infty} a_{n}$ is not zero or does not exist, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

- Preliminary check: are the terms that we are adding up go to zero or not? If not, proceed! If the terms a_{n} are going to zero, pick another test.
- Computation: Find $\lim _{n \rightarrow \infty} a_{n}$.
- State the conclusion: Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (or doesn't exist, whatever the case may be) by the divergence test, the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

Integral Test: Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$.
Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent.

- Preliminary check: If we replace the discrete index n with the continuous variable x in the expression of a_{n}, is the resulting function $f(x)$ (which satisfies $a_{n}=f(n)$) something we can integrate?
- Check the hypotheses:
(a) Is $f(x)$ continuous on $[1, \infty)$?
(b) Is $f(x)$ positive on $[1, \infty)$?
(c) Is $f(x)$ decreasing on $[1, \infty)$? (This part usually requires a computation of a derivative.)
- Computation: Evaluate $\int_{1}^{\infty} f(x) d x$. Does this improper integral converge or diverge? (Remember we have tests for this too!)
- State the conclusion: Note that $f(x)$ is a continuous, positive, decreasing function on $[1, \infty)$ and $a_{n}=f(n)$. Since $\int_{1}^{\infty} f(x) d x$ is convergent (divergent), by the integral test, the series $\sum_{n=1}^{\infty} a_{n}$ is also convergent (divergent).

Comparison Test: Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms. If $\sum_{n=1}^{\infty} b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum_{n=1}^{\infty} a_{n}$ is also convergent. If $\sum_{n=1}^{\infty} b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n, then $\sum_{n=1}^{\infty} a_{n}$ is also divergent.

- Preliminary check: Write down the sequence b_{n} that you want to compare to. Does $\sum_{n=1}^{\infty} b_{n}$ converge or diverge? What is your justification?
- Check the hypotheses:
(a) Are $a_{n} \geq 0$ and $b_{n} \geq 0$ (at least eventually)?
(b) If $\sum_{n=1}^{\infty} b_{n}$ converges, we want to show $a_{n} \leq b_{n}$.

If $\sum_{n=1}^{\infty} b_{n}$ diverges, we want to show $a_{n} \geq b_{n}$.

- Computation: Show the necessary inequality from above.
- State the conclusion: Since a_{n} and b_{n} are positive for all n, and $a_{n} \leq b_{n}\left(a_{n} \geq b_{n}\right)$ and $\sum_{n=1}^{\infty} b_{n}$ converges (diverges), then by the comparison test, $\sum_{n=1}^{\infty} a_{n}$ converges (diverges) also.

Limit Comparison Test: Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=$ c where c is a finite number and $c>0$, then either both series converge or both diverge.

- Preliminary check: Write down the sequence b_{n} that you want to compare to. Does $\sum_{n=1}^{\infty} b_{n}$ converge or diverge? What is your justification?
- Check the hypothesis: Are $a_{n} \geq 0$ and $b_{n} \geq 0$ (at least eventually)?
- Computation: Compute $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ and confirm that this limit is a positive, finite number.
- State the conclusion: Since a_{n} and b_{n} are positive for all n, and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ where c is a finite number and $c>0$, and $\sum_{n=1}^{\infty} b_{n}$ converges (diverges), then by the limit comparison test, $\sum_{n=1}^{\infty} a_{n}$ converges (diverges) also.

Alternating Series Test: Suppose that we have an alternating series. That is $a_{n}=(-1)^{n}\left|a_{n}\right|$ or $a_{n}=(-1)^{n-1}\left|a_{n}\right|$ (assume $a_{n}>0$). If $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ for all n and $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.

- Preliminary check: Is the series alternating?
- Check the hypotheses:
(a) Is $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ for all n ? (Are the terms getting smaller in absolute value?)
(b) Is $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$?
- Computation: Show any necessary computations to verify the hypotheses above.
- State the conclusion: Since $\sum_{n=1}^{\infty} a_{n}$ is an alternating series and $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ for all n and $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent by the alternating series test.

Ratio Test: Let $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$.
(a) If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
(b) If $L>1$, or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(c) If $L=1$, the test in inconclusive. No conclusion can be made about the convergence or divergence of $\sum_{n=1}^{\infty} a_{n}$.

- Computation: Evaluate $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$. If it is finite, we usually call it L. As long as this limit is not 1, we can proceed to state a conclusion.
- State the conclusion: Since $L<1$ ($L>1$ or the limit is infinite), then by the ratio test, the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent and convergent (divergent).

